Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(4): 103058, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36841478

RESUMEN

In rodents, sphingomyelins (SMs) species with very-long-chain polyunsaturated fatty acid (VLCPUFA) are required for normal spermatogenesis. Data on the expression of enzymes with roles in their biosynthesis and turnover during germ cell differentiation and on possible effects on such expression of testosterone (Tes), known to promote this biological process, were lacking. Here we quantified, in isolated pachytene spermatocytes (PtS), round spermatids (RS), and later spermatids (LS), the mRNA levels from genes encoding ceramide (Cer), glucosylceramide (GlcCer), and SM synthases (Cers3, Gcs, Sms1, and Sms2) and sphingomyelinases (aSmase, nSmase) and assessed products of their activity in cells in culture using nitrobenzoxadiazole (NBD)-labeled substrates and [3H]palmitate as precursor. Transcript levels from Cers3 and Gcs were maximal in PtS. While mRNA levels from Sms1 increased with differentiation in the direction PtS→RS→LS, those from Sms2 increased between PtS and RS but decreased in LS. In turn, the nSmase transcript increased in the PtS→RS→LS order. During incubations with NBD-Cer, spermatocytes produced more GlcCer and SM than did spermatids. In total germ cells cultured for up to 25 h with NBD-SM, not only abundant NBD-Cer but also NBD-GlcCer were formed, demonstrating SM→Cer turnover and Cer recycling. After 20 h with [3H]palmitate, PtS produced [3H]SM and RS formed [3H]SM and [3H]Cer, all containing VLCPUFA, and Tes increased their labeling. In total germ cells, Tes augmented in 5 h the expression of genes with roles in VLCPUFA synthesis, decreased the mRNA from Sms2, and increased that from nSmase. Thus, Tes enhanced or accelerated the metabolic changes occurring to VLCPUFA-SM during germ cell differentiation.


Asunto(s)
Espermatogénesis , Espermatozoides , Esfingomielinas , Testosterona , Animales , Masculino , Ratas , Ceramidas/metabolismo , Espermátides/metabolismo , Esfingomielinas/metabolismo , Testosterona/metabolismo , Espermatozoides/citología , Espermatozoides/metabolismo
2.
Vet Immunol Immunopathol ; 251: 110460, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35901545

RESUMEN

Low-cost adjuvants are urgently needed for the development of veterinary vaccines able to trigger strong immune responses. In this work, we describe a method to obtain a low-cost cage-like particles (ISCOMATRIX-like) adjuvant useful to formulate veterinary vaccines candidates. The main components to form the particles are lipids and saponins, which were obtained from egg yolk by ethanolic extraction and by dialyzing a non-refined saponins extract, respectively. Lipids were fully characterized by thin layer chromatography (TLC) and gas-chromatography (GC) and enzymatic methods, and saponins were characterized by TLC, HPLC and MALDI-TOF. Cage-like particles were prepared with these components or with commercial inputs. Both particles and the traditional Alum used in veterinary vaccines were compared by immunizing mice with Ovalbumin (OVA) formulated with these adjuvants and assessing IgG1, IgG2a anti OVA antibodies and specific Delayed-type Hypersensitivity (DTH). In the yolk extract, a mixture of phospholipids, cholesterol and minor components of the extract (e.g. lyso-phospholipids) with suitable proportions to generate cage-like particles was obtained. Also, semi-purified saponins with similar features to those of the QuilA® were obtained. Cage-like particles prepared with these components have 40-50 nm and triggers similar levels of Anti-OVA IgG1 and DTH than with commercial inputs but higher specific-IgG2a. Both adjuvants largely increased the levels of IgG1, IgG2a and DTH in relation to the formulation with Alum. The methods described to extract lipids from egg yolk and saponins from non-refined extract allowed us to obtain an inexpensive and highly effective adjuvant.


Asunto(s)
Saponinas , Vacunas , Adyuvantes Inmunológicos/química , Animales , Inmunoglobulina G , Ratones , Ovalbúmina
3.
Exp Eye Res ; 202: 108359, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33197453

RESUMEN

Müller glial cells, the major glial cell type in the retina, are activated by most retina injuries, leading to an increased proliferation and migration that contributes to visual dysfunction. The molecular cues involved in these processes are still ill defined. We demonstrated that sphingosine-1-phosphate (S1P), a bioactive sphingolipid, promotes glial migration. We now investigated whether ceramide-1-phosphate (C1P), also a bioactive sphingolipid, was involved in Müller glial cell migration. We evaluated cell migration in primary Müller glial cultures, prepared from newborn rat retinas, by the scratch wound assay. Addition of either 10 µM C8-ceramide-1-phosphate (C8-C1P) or 5 µM C16-C1P (a long chain, natural C1P) stimulated glial migration. Inhibiting PI3K almost completely blocked C8-C1P-elicited migration whereas inhibition of ERK1-2/MAPK pathway diminished it and p38MAPK inhibition did not affect it. Pre-treatment with a cytoplasmic phospholipase A2 (cPLA2) inhibitor markedly reduced C8-C1P-induced migration. Inhibiting ceramide kinase (CerK), the enzyme catalyzing C1P synthesis, partially decreased glial migration. Combined addition of S1P and C8-C1P promoted glial migration to the same extent as when they were added separately, suggesting they converge on their downstream signaling to stimulate Müller glia migration. These results suggest that C1P addition stimulated migration of glial Müller cells, promoting the activation of cPLA2, and the PI3K and ERK/MAPK pathways. They also suggest that CerK-dependent C1P synthesis was one of the factors contributing to glial migration, thus uncovering a novel role for C1P in controlling glial motility.


Asunto(s)
Ceramidas/farmacología , Células Ependimogliales/citología , Células Ganglionares de la Retina/citología , Animales , Animales Recién Nacidos , Movimiento Celular/efectos de los fármacos , Células Ependimogliales/efectos de los fármacos , Modelos Animales , Ratas , Ratas Wistar , Células Ganglionares de la Retina/efectos de los fármacos , Transducción de Señal
4.
J Lipid Res ; 59(7): 1175-1189, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29724783

RESUMEN

The sphingolipids (SLs) of rodent spermatogenic cells (spermatocytes, spermatids) and spermatozoa contain nonhydroxylated and 2-hydroxylated versions of very-long-chain (C26-C32) PUFAs (n-V and h-V, respectively) not present in Sertoli cells (SCs). Here, we investigated the expression of selected fatty acid elongases [elongation of very-long-chain fatty acid protein (Elovl)], with a focus on Elovl4, and a fatty acid 2-hydroxylase (Fa2h) in rat testes with postnatal development and germ cell differentiation. Along with Elovl5 and Elovl2, Elovl4 was actively transcribed in the adult testis. Elovl4 mRNA levels were high in immature testes and SCs, though the protein was absent. The Elovl4 protein was a germ cell product. All cells under study elongated [3H]arachidonate to tetraenoic and pentaenoic C24 PUFA, but only germ cells produced C26-C32 PUFAs. Spermatocytes displayed the highest Elovl4 protein levels and enzymatic activity. Fa2h mRNA was produced exclusively in germ cells, mostly round spermatids. As a protein, Fa2h was mainly concentrated in late spermatids, in the step of spermiogenesis in which they elongate and their heads change shape. The expression of Elovl4 and Fa2h thus correlate with the abundance of n-Vs and h-Vs in the SLs of rat spermatocytes and spermatids, respectively.


Asunto(s)
Amidohidrolasas/genética , Proteínas del Ojo/genética , Ácidos Grasos Insaturados/metabolismo , Regulación de la Expresión Génica , Proteínas de la Membrana/genética , Espermatocitos/metabolismo , Espermatogénesis/genética , Esfingolípidos/metabolismo , Animales , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Espermátides/citología , Espermátides/metabolismo , Espermatocitos/citología
5.
J Lipid Res ; 58(3): 529-542, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28082410

RESUMEN

Rat spermatogenic cells contain sphingomyelins (SMs) and ceramides (Cers) with very long-chain PUFAs (VLCPUFAs) in nonhydroxylated (n-V) and 2-hydroxylated (h-V) forms. How these atypical species distribute among membrane fractions during differentiation was investigated here using a detergent-free procedure to isolate a small light raft-like low-density fraction and a large heavy fraction, mostly derived from the plasma membrane of spermatocytes, round spermatids, and late spermatids. The light fraction contained cholesterol, glycerophospholipids (GPLs), and SM with the same saturated fatty acids in all three stages. In the heavy fraction, as PUFA increased in the GPL and VLCPUFA in SM from spermatocytes to spermatids, the concentration of cholesterol was also augmented. The heavy fraction had mostly n-V SM in spermatocytes, but accumulated h-V SM and h-V Cer in spermatids. A fraction containing intracellular membranes had less SM and more Cer than the latter, but in both fractions SM and Cer species with h-V increased over species with n-V with differentiation. This accretion of h-V was consistent with the differentiation-dependent expression of fatty acid 2-hydroxylase (Fa2h), as it increased significantly from spermatocytes to spermatids. The non-raft region of the plasma membrane is thus the main target of the dynamic lipid synthesis and remodeling that is involved in germ cell differentiation.


Asunto(s)
Ceramidas/metabolismo , Colesterol/metabolismo , Ácidos Grasos Insaturados/metabolismo , Esfingomielinas/metabolismo , Animales , Diferenciación Celular/genética , Glicerofosfolípidos/metabolismo , Masculino , Microdominios de Membrana/genética , Microdominios de Membrana/metabolismo , Ratas , Espermátides/crecimiento & desarrollo , Espermátides/metabolismo , Espermatocitos/crecimiento & desarrollo , Espermatocitos/metabolismo , Espermatogénesis/genética , Testículo/crecimiento & desarrollo , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...